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TABLK I.—Estimated trap efficiencies for wild and
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significantly (P ^ 0.05) between trap positions,
being higher at the middle position than at the foot
position and much higher at head position (where
water velocity was greatest) than at the other two.

Mean trap efficiencies differed between wild
and hatchery fish (P < 0.05) at the middle and
foot positions but not at the head position (Table
1). At the foot position, mean trap efficiency was
20 times greater for wild fish than for hatchery
fish.

Evening checks of the trap's live-well revealed
few wild chinook salmon (marked or unmarked)
but many hatchery fish (marked and unmarked).
In most instances (eight of nine trials) the esti-
mated number of marked hatchery fish within the
trap at 2000 hours was at least 75% of the total
number of marked hatchery fish counted within
the trap the next morning. In contrast, evening
live-well checks revealed only two marked and
four unmarked wild fish during the 9 d study.
These observations suggest that hatchery fish
moved downstream during daylight hours whereas
wild fish moved mainly at night.

Underwater observations at the mouth of the
rotary trap during daylight (1300-2000 hours) in-
dicated that hatchery fish commonly avoided the
trap in areas of low and medium water velocity.
Hatchery fish exited the upstream riffle with their
heads facing the current. When the trap was po-
sitioned at the head of the pool, these fish were
captured while they were still oriented upstream.
When the trap was set in the middle or the foot of
the pool, out of the turbulent flow, the fish had
reversed their orientation and begun to actively
swim downstream before they encountered the
trap. It was in their downstream orientation that
hatchery fish were observed avoiding the trap.

Wild fish were not seen in their approaches to
the trap. Most of them migrated at night, and con-
sistent trap efficiencies for wild fish suggest that
trap avoidance by wild fish is not a problem at low
light levels.

Hatchery fish averaged 78.7 mm (TV = 1,551)
in fork length whereas wild-reared fish averaged
66.6 mm (N = 163), a significant difference (P <
0.05). Their size advantage might have made
hatchery fish better able than wild fish to avoid
capture regardless of migration timing.

Discussion
Hatchery age-0 chinook salmon in the South

Umpqua River were captured far less efficiently
than wild salmon at some trap locations within a
pool. If trap efficiencies for hatchery fish in low

or medium velocity waters had been applied to
wild fish, efficiencies for wild fish would have
been greatly underestimated. The differences in
the trap efficiency between hatchery and wild fish
were probably related to diel migration timing and
water velocity, and possibly to fish size.

Because hatchery fish migrated during daylight
hours when few wild fish did, one assumption im-
plicit to estimation and application of trap effi-
ciencies was violated: that both groups have sim-
ilar behavior (Ricker 1975). Cramer et al. (1992)
also found that time of day influenced capture rates
of age-0 hatchery chinook salmon, which varied
from 1.6% when marked fish were released during
the day to 26% when they were released during
the night. In contrast, trap efficiencies for wild age-
0 chinook salmon, which migrate primarily at
night (Hartman et al. 1982; McMenemy and Kyn-
ard 1988; Zafft 1992), will probably not be af-
fected by release time. Cramer et al. (1992) sug-
gested that marked fish be released at dusk. This
practice, however, could lead to overestimates of
relevant efficiency if some unmarked fish migrate
during the day, when trap efficiencies may be low-
er.

In our trials, trap efficiencies for wild and hatch-
ery fish were similar only where water velocity
was so high that fish migrating during the day were
unable to avoid capture. A water velocity suffi-
ciently greater to prevent fish from avoiding cap-
ture likely varies both among and within salmonid
species (Seelbach et al. 1985; Dambacher 1991).
Trap positions that minimize avoidance behavior
should be determined for each species at each trap-
ping location. If a trap cannot be positioned in
strong current, trap efficiencies should be inde-
pendently estimated for hatchery and wild fish—
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