
Using SPARK-Ada to Model and Verify a MILS Message Router*

Bryan Rossebo, Paul Oman, Jim Alves-Foss, Ryan Blue, and Paul Jaszkowiak
Center for Secure and Dependable Systems

University of Idaho
Moscow, ID 83844-1008

Abstract

The concept of information classification is used by all

nations to control information distribution and access. In
the United States this is referred to as Multiple Levels of
Security (MLS), which includes designations for
unclassified, confidential, secret, and top secret
information. The U.S. Department of Defense has
traditionally implemented MLS separation via discrete
physical devices, but with the transformation of military
doctrine to net-centric warfare, the desire to have a single
device capable of Multiple Independent Levels of Security
(MILS) emerged. In this paper we present a formal model
of a MILS message router using SPARK-ADA. The model
is presented as a case study for the design and
verification of high assurance computing systems in the
presence of an underlying separation kernel. We utilized
the correctness-by-design approach to secure system
development and discuss the limitations of that approach
for the type of system we model.

1. The need for certifiably secure systems*

One of the largest problems facing the field of

computer science is that of computer and network
security. With the increased connectivity of Information
Technology (IT) systems and process control systems,
security is needed to defend against malicious persons
intent on abusing or attacking network resources. This is
especially true for unbounded networks like the Global
Information Grid (GIG) [1].

Every year, billions of dollars are lost due to cyber
intrusions and computer viruses that threaten corporate
and government systems. The "ILOVEYOU" virus alone

tation thereon. The views and
conclusions contained herein are those of the authors and should not be
interpreted as necessarily repres

Report Documentation Page Form Approved
OMB No. 0704-0188

greatly simplify the work of building and certifying
MILS-based EAL7 systems for critical uses.

3. A SPARK-Ada MMR model

The main goal of the research described in this paper is

to model the MMR and then verify the model’s correct
operation via formal methods. One of the principle
objectives of the MILS initiative is the creation of EAL7-
certified components. EAL7 requires the entire system to
be mathematically proven using formal methods [4].
Specifically, we must create a high-level MMR design
that is (a) proven in a formal modeling language, and (b)
traceable to the code implementation [5]. SPARK-Ada is
a formal methods tool that facilitates both criteria;
specifically, it incorporates formal Hoare logic operations
with executable Ada code

fact operate correctly to facilitate secure messaging, and

6. The Main package is just a wrapper program that
executes the System package indefinitely.
Fig. 4 depicts the relationship between the MMR

package, with its subordinate Memory and Policy
packages, and the simulated processes denoted A through
F. The Policy package contains an adjacency matrix
representing the security policy diagraph shown in Fig. 3.

The figure shows how the MMR is designed to interact in
the model, where the partition in each row is allowed to
talk to the partition in the column if the cell is shaded.
The MMR has only three publicly available procedures:
Send_Msg, Read_Msgs, and Route. There are two internal
packages within the MMR: Memory that has two
procedures, Write and Read, and Policy that has one

Send Msg

Read Msgs

MMR

Route

Proc A
Send

Receive

Proc F
Send

Receive

Write

Read

Memory

A

B

C

D

E

F

S B C D E FA

A B C D E F

B

C

D

E

F

A

Policy
Is Allowed

Proc B
Send

Receive

Proc E
Send

Receive

Figure 4. MMR interactions with processes A-F

--# inherit Lbl_t, Msg_t;
package Memory
--# own Mem_Space : Mem_Space_T;
--# initializes Mem_Space;
is
type Mem_Space_T is array

 (Lbl_t.Pointer) of Msg_t.Msg;
procedure Write(

 M: in Msg_t.Msg;
 S: in Lbl_t.Pointer);
--# global in out Mem_Space;
--# derives Mem_Space from *,
--# M,
--# S;
--# post Mem_Space = Mem_Space~[S => M];
procedure Read(

 M: out Msg_t.Msg;
 S: in Lbl_t.Pointer);
--# global in Mem_Space;
--# derives M from Mem_Space,
--# S;
--# post M = Mem_Space(S);

end Memory;

package body Memory is
 Mem_Space: Mem_Space_T;

procedure Write(
 M: in Msg_t.Msg;
 S: in Lbl_t.Pointer) is

begin
 Mem_Space(S) := M;

end Write;
procedure Read(

 M: out Msg_t.Msg;
 S: in Lbl_t.Pointer) is

begin
 M := Mem_Space(S);

end Read;
begin
 Mem_Space := Mem_Space_T'(
 Lbl_t.Pointer => Msg_t.Def_Msg);
end Memory;

(a) Memory package specification (b) Memory package body

Figure 5. SPARK-Ada code for Memory package

function, Is_Allowed. There is also an internal table
within the MMR

SPADE Proof Checker in manually guide mode. The
proof checker program takes in <name>.vcg or
<name>.siv files containing unverified conditions and
outputs the manually guided verifications into
<name>.plg files. In a similar manner, the review team
can create verifications in a <name>.prv file containing
verification conditions that have been manually verified
by a review committee.

When all verification conditions have been proven,
either automatically or manually, the Proof Obligation
Summarizer (POGS) checks for the existence of all files

• Tying the executable code to the formal proof
assertions (a la SPARK-Ada) enables a more
rigorous proof model than can be attained through
non-executable formal methods proof environments
in which we have worked (e.g., ACL2).

• The lack of commercial grade on-call assistance on
the use and nuances of the SPARK-Ada verification
toolset was a significant hindrance to our task.

