Irrigated Winter Barle

Brad Bro n, Soil Scientist
Parma Research and Extension Center

\$\frac{9\chi_{\text{0}}}{1} \tag{1} \tag{1} \tag{1} \tag{1} \tag{2} \tag{1} \tag{1} \tag{2} \tag{1} \tag{1} \tag{1} \tag{2} \t

Nitrogen (N)

Total N Requirements Based on Potential Yield

Available Nitrogen

Calculation of N Application Rates

 , of the destrict Lorentz equations, on the solution of the s

Nitrogen Impact on Lodging

Phosphorus (P)

Table 5. Recommended phosphorus fertili er rates (lb P₂O₅ per acre)1 based on soil test P and lime content.

Soil test P ²	Lime content³ (%)			
0 to 12 inches	0	5	10	15
(ppm)	(lb P ₂ O ₅ per acre)			
0	160	200	240	280
5	100	140	180	220
10	40	80	120	160
15	0	20	60	100
20	0	0	0	40
25	0	0	0	0

¹To convert P from the oxide (P₂O₅) to the elemental form (P), multiply by 0.43.

 $E \sim t$, $t \sim t$, $t_0 \sim t$, $t_$ 8, 10, 0, 18, 1 ... 18, ... 18, go o to P. ot , t D . , \ldots . \S . , . . . au . , t . . σ . . δ . . , t-🙇 🗼 i i i i i i . . . D P_{-} , P_{-} , Q_{-} , Q..... , . , . , . , o t . , o . , , , , t . , , t <u>. , , , , , , ,</u> , , ... g_{x_1} g_x F_0 g_x ... t ... t g_x g_y f_y g, and PN 283, Fii Bad L cai C a R Acc .

Potassium (K)

 \mathbf{x},\mathbf{t} $\{s_1,\ldots,s_{n-1},\ldots,s_{n-1},\ldots,s_{n-1},t_0,\ldots,P_{0}\}$ $\mathfrak{o}^{\mathsf{T}}$, \mathfrak{t} . \mathfrak{I} , $\mathfrak{o}^{\mathsf{L}}$. $\mathfrak{o}^{\mathsf{L}}$. $\mathfrak{o}^{\mathsf{L}}$. $\mathfrak{o}^{\mathsf{L}}$. $\mathfrak{o}^{\mathsf{L}}$ $A_{i,0}$ A_{i construction to the K.

, . . 68 . . K , . t . , . . o . . t K . o . . t . . t E . t & $K_{\cdot,\cdot,0}$, $K_{\cdot,\cdot,0}$, $K_{\cdot,0}$, $K_{\cdot,0}$, $K_{\cdot,0}$, $K_{\cdot,0}$

Table 6. Recommended potassium fertili er rates (lb K_aO per acre) for inter barle based on soil test K.

K soil test ¹	Potassium rates		
0 to 12 inches			
(ppm)	(lb K ₂ 0 per acre) ²		
25	160		
50	80		
75	0		

¹NaHCO₃ extraction.

Sulfur (S)

 $\text{Totally} \quad \text{Totally} \quad \text{T$, o . . . , . o . . . t . d . . t . . $\boldsymbol{g}_{\tau^{\prime}}$ b \boldsymbol{t} . . o . . t . . t $\ldots \quad \circ \quad \circ \quad \iota_1 \quad \iota_2 \quad \iota_3 \quad \iota_4 \quad \ldots \quad \iota_5 \quad \circ \quad \bullet \quad \circ \quad \circ \quad \ldots \quad \ldots \quad \iota_7 \quad \ldots \quad \iota_7 \quad \ldots \quad \iota_7 \quad \ldots \quad \iota_8 \quad \ldots \quad \iota_8$ $0 \quad \text{i.t.} \quad t \quad 0 \quad \text{o.t.} \quad \text{i.t.} \quad \text{$

To the last on took of a or was a superior of or \cdot t, \cdot , \cdot (t,t) \mathbf{g} (t,t) \mathbf{g} (t,t) (t,t) (t,t) (t,t) (t,t) (t,t) $t_1, \ldots, t_{n-1}, \ldots, t_{n-1}, \ldots, t_{n-1}, \ldots, t_{n-1}, \ldots$ Then $t \neq 0$ and $t \neq 1$ and $t \neq 0$ and $t \neq 1$ and $t \neq 1$ ot N.

 $A \circ o \circ g \quad \text{, o } \quad \text{, } t_i \circ t_i \circ$ $(\ \ldots\ ,t,\ 8\ \ldots\ O_4^-\ \ldots\ ,t\ \ldots\ too\ b\ o\)\ ,\ ,\ \ldots$ t = 0, t = 0, t = 0, t = 0, t = 0. $\mathbf{x}_{1}, \dots, \mathbf{x}_{n}, \mathbf{t}_{n} \in \mathbf{0}$ \ldots **9** $\mathbf{0} \cdot \mathbf{1} \cdot \mathbf{1} \cdot \mathbf{1} \cdot \mathbf{0} \cdot$ $\mathbf{o} = \mathbf{v} \cdot \mathbf{t} \cdot \mathbf{N}_{\mathbf{o}} + \mathbf{v} \cdot \mathbf{v} \cdot$ $oldsymbol{t}$, $oldsymbol{t}$ $o \rightarrow t \rightarrow t \rightarrow o \rightarrow d_1 \rightarrow d_2 \rightarrow d_0 \rightarrow$

 $I = \{1, \dots, 1, \dots,$, § , . , o'§ , (d_{-1}, i, t) , (t) , . , (t) , . , (t)- 11 to 00 to 18 0 to 8 to 15 to 0

 $P_{\text{tot}},\,t_{\text{tot}}$ 17:1. , b , o . 17:1 . . . , t, . . o . & o M_0 , t_0 , ... t_0 , ... t_1 8 10 - 111, 1 - 10, 1 - 10 1 - 11 $g_{-1}d_{-1},\ldots,g_{-1},\tau_{-1},\ldots,t_{2n-1},\sigma_{-1},t_{-n}g_{-n-1},$, , ,,,, . . . t., , , **§**. , . t

Micronutrients (Fe, Mn, Zn, Cu, B)

0.01, 0.08 0.01 0.00 0.01 0.01Survey of the one \mathbf{g}_{i} , \mathbf{t} , \mathbf{o}^{\perp} , \mathbf{t} , \mathbf{I} , \mathbf{o} $\mathbf{o} \cdot \mathbf{E} \cdot$ To $t = (t_1, t_2, t_3, \ldots, t_n)$ of $t = (t_1, \ldots, t_n)$, \mathbf{t} , \mathbf{t} \mathbf{A} , \mathbf{t} , \mathbf{t} , \mathbf{t} , \mathbf{t} , \mathbf{t} , \mathbf{t} , \mathbf{t} 0 - 11. 1. 1. 1. 1

²NaHCO₂ extraction (sodium bicarbonate).

³Lime content is measured as calcium carbonate equivalent.

 $^{^2\}text{To}$ convert from the oxide (K $_2$ 0) to the elemental form (K) multiply by 0.84.