SLOW RELEASE NITROGEN FOR IRRIGATED HARD RED SPRING WHEAT YIELD AND PROTEIN

B. D. Brown

University of Idaho, Parma Research and Extension Center

ABSTRACT

Table 1. Jerome hard red spring wheat response to preplant conventional urea and slow release N fertilization. Parma, 2005.

Total N applied	Preplant Urea N	Preplant ESN N	Late Urea N	Yield	Protein	Test weight	Height	SPAD	Grain N
	lb/A			bu/A	%	lb/bu	in		lb/A
100									
120									
	120			84	13.9	61.7	34	49.1	

 Table 3. Jerome hard red spring wheat response to preplant conventional urea and ESN slow release N fertilization. Parma, 2007.

Total N applied	Preplant Urea N	Preplant ESN N	Late Urea N	Yield	Protein	Test weight	Height	Lodged	SPAD	Grain N	ANR
		lb/A		bu/A	%	lb/bu	in	%		lb/A	%
0				87.0	11.7	60.8	32.0	0	43.1	108.1	

Preplant ESN protein averaged 0.17% lower than with split urea N over three years, but differed significantly in only one of six comparisons.

Total grain N content per acre also differed appreciably in the three years, and depended primarily on yield. Grain N ranged from 112 to 137 lb/A in 2005, and was highest at the lowest N rate due to higher yields. Grain N ranged from 136 to 174 lb/A in 2006, and from 170 to 214 lb/A in 2007 for the same treatments, but unlike 2005, were highest with the highest preplant N rate. In most comparisons, grain N with preplant ESN was greater than with preplant urea, and was consistently as high as with split applied urea.

rate. In most comparisons, grain N with preplant ESN was greater than with preplant urea, and was consistently as high as with split applied urea. Including a control in 2006 and 2007 enabled calculation of apparent N recovery (ANR). The ANR in harvested grain of that applied in both years decreased as N rates increased. ANR of preplant N ranged from highs of 50.6% and 51.3% with preplant urea and 57.1% and 61.2% with preplant ESN for the 120 lb N rate, to only 33.4% and 39.6% with urea and 40.7% and 44.0% with ESN at the 240 lb N rate. Recovery estimates are conservative as they don't include N contents of chaff and stubble. TJETBT(ff)6(72 667.753cb)-2(le.)-62046**#**T1bCnn311()-1f **#**4@05004.4stubb