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Portfolio theory: Basics

e Portfolio weights wj, Asset returns X!



Markowitz Optimization

e Find the portfolio with maximum expected return for a given



Markowitz Optimization

e IN QM notation:

W\ < Agl Wolg\|Wa' =g+ (Al 1) Walg\|Wa
a a

e Compared to the naive allocation |w\ « |g\:
— Eigenvectors with A > 1 are projected out

— Eigenvectors with A Q[ 1 are overallocated

e Very important for ““stat. arb.” strategies

E m - | J.-P. Bouchaud



Empirical Correlation Matrix

e Empirical Equal-Time Correlation Matrix E

1 xitxjt
ST T o,
t 1~]

Order N2 quantities estimated with NT datapoints.
If T <N E is not even invertible.

Typically: N =500 1000; T =500 2500

A FUMNMD HTIANAGENIENT

E m | | J.-P. Bouchaud






Risk of Optimized Portfolios

e Let E be a noisy, unbiased estimator of C. Using convexity
arguments, and for large matrices:

2 2
Rin R



In Sample vs. Out of Sample




Possible Ensembles



Null hypothesis C =1

e Goal: understand the eigenvalue density of empirical corre-
lation matrices when ¢ = N/T = O(1)

e Ejj is a sum of (rotationally invariant) matrices Eitj = (X;‘th)/T

e Free random matrix theory: R-transform are additive

ANg (A+qg 1)2
A — AA, Crsz1 .
PE(N) 21N [T

[Marcenko-Pastur| (1967) (and many rediscoveries)

e Any eigenvalue beyond the Marcenko-Pastur band can be
deemed to contain some information (but see below)
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Null hypothesis C =1

e Remark 1: Gg(0)= X L'\g = (1
pute the di erent risks:

Rin

Rtrue = — ; Rout =

vl g

q) 1, allowing to com-

Rin




General C Case

e The general case for C cannot be directly written as a sum
of “Blue” functions.

e Solution using di erent techniques (replicas, diagrams, S-
transforms):
1

Ge(2) = dApc(M); N1 g+ 0zGe(2))

e Remark 1: Gg(0) = (1 q) 1 independently of C

e Remark 2: One should work from pc Geg and postulate
a parametric form for pc(A), i.e.:
_ HA _
pc(A) = n )\0)1_,_“9(7\ Amin)
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Empirical Correlation Matrix



Eigenvalue cleaning



What about eigenvectors?

e Up to now, most results using RMT focus on



What about eigenvectors?

e Correlation matrices need a certain time T to be measured

e Even if the “true” C is fixed, its empirical determination
fluctuates:

E{ = C + noise

e What is the dynamics of the empirical eigenvectors induced
by measurement noise?

e Can one detect a genuine evolution of these eigenvectors
beyond noise e ects?
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What about eigenvectors?

e More generally, can one say something about the eigenvec-
tors of randomly perturbed matrices:

H=Hy+ H;

where Hg is deterministic or random (e.g. GOE) and Hq
random.
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Eigenvectors exchange

e An issue: upon pseudo-collisions of eigenvectors, eigenvalues
exchange

e Example: # 2 matrices

Hi1 = a, Hoo =a+ H>1 = Hio =,

A & oa+§i c? + —

e Let c vary: quasi-crossing for ¢ 0, with an exchange of the
top eigenvector: (1, 1) (1,1)

e For large matrices, these exchanges are extremely numerous
labelling problem
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Intermezzo

e Non equal time correlation matrices



Intermezzo: Singular values

e Singular values: Square root of the non zero eigenvalues
of GGT or G'G, with associated eigenvectors uf and vk
1 s1=s2>..5MN) o)

e Interpretation: k = 1: best linear combination of input vari-
ables with weights vil, to optimally predict the linear com-
bination of output variables with weights u%(, with a cross-

correlation = s1.

e S1. Mmeasure of the predictive power of the set of Xs with
respect to Ys

e Other singular values: orthogonal, less predictive, linear com-
binations
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Benchmark: no cross-correlations

e Null hypothesis: No correlations between Xs and Y s:

Gtrue ©

e But arbitrary correlations among Xs, Cx, and Ys, Cy, are
possible

e Consider exact normalized principal components for the sam-

ple variables Xs and Y s:
1 ~

t et t

P = T~ j UijXj;  Ya = -

and define G =Y XT.

X)
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Benchmark: Random SVD
e Final result:([Wachter] (1980); [Laloux,Miceli,Potters,JPB])

(s vy )+ s9)
ns(l s2)

p(s)=(m+n 1)"8(s 1)+

with

Ve=n-+m 2mn+2 mn(l n)(1 m), 0 vy+ 1

e Analogue of the Marcenko-Pastur result for rectangular cor-
relation matrices

e Many applications; finance, econometrics (‘large’ models),
genomics, etc.

e Same problem as subspace stability: T N, N=M P
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Sectorial Inflation vs. Economic indicators



Back to eigenvectors: perturbation theory

e Consider a randomly perturbed matrix:

H=Hy+ H;

e Perturbation theory to second order in yields:

2 s ;
det(G)| =1 — LlJI‘Hl‘LlJJ .
P SN S M- CRM | S| S

\ 2
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The GOE case

e Take Hg and H;1 to be GOE matrices, and consider the sub-
space of eigenvectors in a finite interval [a,b] of the Wigner
spectrum [ 2, 2]

e Let ="/vInN, then, when N P
~2 2 2 ~2
o~ P@Z+p0)? 7
2 Dponda INN
with:
P b
— = A)dA.
= P

and Z a numerical constant that only depends on the two-
point correlation function of eigenvalues [



Stability of eigenspaces: GOE



The case of correlation matrices

e Consider the empirical correlation matrix:

1 T
E=C+n n== X!



Stability of eigenvalues: Correlations



Stability of eigenspaces:. Correlations




Stability of eigenspaces:. Correlations



Stability of eigenspaces:. Correlations



The case of correlation matrices

e Empirical results show a faster decorrelation real dynamics
of the eigenvectors

e The case of the top eigenvector, in the limit A > A», and
for EMA:



