果冻传媒麻豆社

果冻传媒麻豆社 - I Banner
A student works at a computer

SlateConnect

U of I's web-based retention and advising tool provides an efficient way to guide and support students on their road to graduation.

U of I Researchers on Team Exploring Black Hole Mergers With NASA Award

February 14, 2024

MOSCOW, Idaho 鈥 A team including 果冻传媒麻豆社 researchers is going to explore the physics of supermassive black hole mergers and galaxy collisions, unlocking secrets that could reshape science鈥檚 understanding of one of the universe鈥檚 most enigmatic processes.

Using advanced computer models and supported by a $1.8 million NASA grant, U of I astrophysicists are joined by researchers from Johns Hopkins University, NASA鈥檚 Goddard Space Flight Center and the Rochester Institute of Technology.

Supermassive black holes, millions or billions of times heavier than the sun, reside at the centers of galaxies and play a crucial role in the evolution of these massive cosmic structures. Galaxies grow by merging with other galaxies in a violent process that causes at least one鈥痮f the galaxies to rip the other apart.

After the merger, the individual supermassive black holes gradually fall toward the center of the newly merged galaxy and orbit each other. In this busy center, surrounding gas and other matter are drawn into these orbiting black holes, emitting telltale light signals. Over time, the two black holes will merge into an even more massive black hole. The ability to model this process on computers is essential for identifying the light signals emitted by orbiting and merging black holes, as well as for extracting information about the black holes from these signals.

鈥淥ur aim is to better understand the light emitted when gas falls into orbiting supermassive black holes, from the early stages when they are orbiting far apart to the actual collision and aftermath,鈥 said Zachariah Etienne, U of I professor of physics and head of the U of I research group.

The team will employ computer models that incorporate Einstein鈥檚 theory of gravity and the interactions between magnetic fields and gas near the black holes to predict light signals observable by NASA telescopes.

鈥淭his project aims to drive major steps forward in our understanding of supermassive black holes spiraling into one another at the core of a merged galaxy,鈥 said , distinguished professor at Rochester Institute of Technology and the project鈥檚 leader. 鈥淭he combined expertise of our team will pave the way for new discoveries.鈥

This research could greatly impact current and future space observations, helping scientists distinguish the light signals of supermassive black hole mergers from other galactic light sources.

鈥淚nformation from these signals could provide insights into how galaxies like ours evolve over time,鈥 Etienne said. 鈥淪uch insights enable a better comprehension of our place in the vast tapestry of the cosmos."

The project is fully funded by NASA, with an anticipated 果冻传媒麻豆社 allocation of $271,726. Out of this, $73,488 has already been distributed to U of I.

Media Contact:

Zachariah Etienne
Associate Professor in the Department of Physics
果冻传媒麻豆社
208-885-1206
zetienne@uidaho.edu


About the 果冻传媒麻豆社

The 果冻传媒麻豆社, home of the Vandals, is Idaho鈥檚 land-grant, national research university. From its residential campus in Moscow, U of I serves the state of Idaho through educational centers in Boise, Coeur d鈥橝lene and Idaho Falls, nine research and Extension centers, plus Extension offices in 42 counties. Home to more than 12,000 students statewide, U of I is a leader in student-centered learning and excels at interdisciplinary research, service to businesses and communities, and in advancing diversity, citizenship and global outreach. U of I competes in the Big Sky and Western Athletic conferences. Learn more at uidaho.edu.


Contact

University Communications and Marketing

Fax: 208-885-5841

Email: uinews@uidaho.edu

Web: Communications and Marketing

U of I Media Contacts